A Case of Bone Marrow Necrosis in B-Acute Lymphoblastic Leukemia with Philadelphia Chromosome at Presentation

In Hwa Jeong, M.D.,1 Gyoo Dae An, M.D.,1 Hyeon Ho Lim, M.D.,1 Kwang Sook Woo, M.D.,1 Kyeong Hee Kim, M.D.,1 Jeong Man Kim, M.D.,1 Ji Hyun Lee, M.D.,2 Jin Yeong Han, M.D.2

Department of Laboratory Medicine1, Division of Hematology-Oncology, Department of Internal Medicine2, Dong-A University College of Medicine, Busan, Korea.

Bone marrow necrosis (BMN) is a pathologic state which is derived from various disease entities. Most commonly, it is accompanied by hematologic malignancies such as acute leukemia. The patients with marrow necrosis are generally known to have dismal prognoses but variations exist according to early diagnosis. Here we report a case of BMN in an acute lymphoblastic leukemia patient with Philadelphia chromosome at presentation.

Key Words: Bone marrow necrosis, B-ALL, Philadelphia chromosome

INTRODUCTION

Bone marrow necrosis (BMN), which is usually associated with hematologic malignancies and solid tumors, is an infrequent pathologic status. In a ten-year retrospective study, about 90% of BMN were resulted from metastatic tumor or hematolymphoid malignancies [1]. Upon bone marrow aspiration and biopsy observations, destruction of normal bone marrow structure and necrosis of medullary stroma and tissue with preservation of cortical bone are found. Herein we report a case of BMN in acute lymphoblastic leukemia (ALL) with Philadelphia (Ph) chromosome, especially at initial presentation, which is believed to be the first case in Korea, to the best of our knowledge.

CASE

A 58-year-old man was admitted to our hospital with fever (37.7°C), lower back pain, noted thrombocytopenia (43,000/μL), and increased percentage of atypical lymphocytes (40%) on peripheral blood smears examined at a local hospital. He had a history of pituitary tumor undergone removal, diabetes mellitus, and hypertension. His initial complete blood count revealed pancytopenia (hemoglobin 11.6 g/dL, white blood cell 3,220/μL, platelet 43,000/μL) and relative lymphocytosis (34% neutrophils, 55% lymphocytes, 3% monocytes, 3% eosinophils) and slight shift to the left of maturation pattern (2% metamyelocytes, 3% myelocytes). Other laboratory findings were: blood urea nitrogen (BUN) 29 mg/dL, creatinine 1.31 mg/dL, alkaline phosphatase 235 U/L, lactate dehydrogenase 2,288 U/L, and CRP 17.64 mg/dL.

After admission, he suffered from pleuritic pain and consequent chest computed tomography showed pleural effusion, atelectasis, and multiple lymph node enlargements on left supraclavicular...
Fig. 1. Peripheral blood smear showing atypical lymphocytes and a few blast cells (Wright-Giemsa stain, ×200, ×1,000) (A, B). Bone marrow aspirate smear showing hypercellular marrow and coagulative necrosis (Wright-Giemsa stain, ×200) and magnified view of mostly ghost cells and one hematopoietic granulocyte (Wright-Giemsa stain, ×1,000) (C, D). Bone marrow biopsy showing almost no normal hematopoietic elements and only a few fat cells (Hematoxylin and eosin stain, ×200) and magnified view of mostly amorphous, eosinophilic substance on bone marrow biopsy (Hematoxylin and eosin stain, ×1,000) (E, F).
Serial peripheral blood smears conducted on the fifth day of his admission showed a few blast cells (7%) and atypical lymphocytes (Fig. 1A, B). Following bone marrow aspiration done on posterior superior iliac spine showed mostly necrotic blast-like cells against serous and amorphous background, accounting for almost all of the cellular components (Fig. 1C, D). The biopsy contained few parts of normal bone marrow fat spaces and some lymphoblast cells, but most of the components were unidentifiable and mostly

and both paratracheal areas. First clinical impression was costochondritis due to viral infection. However, virology workups including Rickettsia typhus, Orienta Tsutsugamushi antibody, Leptospira antibody, cytomegalovirus, Ebstein-Barr virus, and mycoplasma did not show any meaningful results. Further evaluation of autoimmune markers such as C3, C4, CH50, anti-RNP, anti-SSA (Ro), anti-SSB (La), anti-Sm, and anti-ds DNA IgG neither showed specific findings.

Fig. 2. Conventional karyotyping shows a 46,XY,t(9;22)(q34.1;q11.2)[13]/46,XY[7] (Giemsa-Leishman-Trypsin banding).

Fig. 3. (A) Reverse transcription polymerase chain reaction (RT-PCR) results showing band on eighth lane. (B) Split-out image showing bright band on 8F lane, corresponding to BCL-ABL1 e1a2 fusion transcript (320 base pairs). (C) Follow-up RT-PCR showing no band on third lane. Abbreviations: M, nucleic acid marker ladder; Pc, positive control; Nc, negative control; Pt, patient.
eosinophilic (Fig. 1E, F). Abdominal ultrasound showed splenomegaly.

Blast counts on serial peripheral blood smears increased to 29% and as he was suspected of having acute leukemia, additional laboratory tests were conducted. Flow cytometric analysis on peripheral blood showed that the cells were positive for CD10 (90.72%), CD19 (91.91%), CD20 (83.19%), cytoplasmic CD79a (70.31%), terminal deoxynucleotidyl transferase (62.61%), HLA-DR (93.87%), CD34 (91.40%), CD71 (48.05%) and negative for T-cell markers. The chromosome analysis showed 46,XY,t(9;22)(q34.1;q11.2)[13]/46,XY[7] (Fig. 2). Reverse transcription polymerase chain reaction (RT-PCR) analysis on peripheral blood showed BCR-ABL1 (e1a2) fusion transcripts (Fig. 3). Fluorescence in situ hybridization (FISH) showed BCR-ABL1 rearrangements, too (66.9%) (Fig. 4).

He was diagnosed as B-lymphoblastic leukemia/lymphoma with t(9;22)(q34.1;q11.2), therefore Hyper-CVAD regimen (cyclophosphamide, vincristine, adriamycin, dexamethasone) and prophylactic intrathecal chemotherapy (methotrexate, Ara-C) were done for 14 days. He was also treated with tyrosine kinase inhibitors (Gleevec and Sprycel) and antibiotics (vancomycin).

After one month of treatment, bone marrow study, RT-PCR, FISH, and chromosome study were repeated for follow-up. RT-PCR, FISH, and chromosome study showed normal results but bone marrow aspiration and biopsy still showed diffuse coagulative necrosis with near total absence of viable hematopoietic cells but preserved bony trabeculae. During continued chemotherapy treatment, he expired on the 38th day of admission due to uncontrolled infection.

DISCUSSION

There have been numerous reports of BMN subsequent to various etiologies. However, there are only a few cases of BMN associated B-ALL bearing Philadelphia chromosome, particularly at diagnosis. Especially in Korea, we believe this is the first case. B-lymphoblastic leukemia/lymphoma with t(9;22)(q34.1;q11.2) is a neoplasm of lymphoblasts committed to the B-cell lineage in which the blasts harbor a translocation between BCR gene on chromosome 22 and the ABL1 oncogene on chromosome 9 [2].

Six cases of B-ALL with BCR-ABL1 presenting as BMN have been reported worldwide as shown in Table 1. In a 10-year-retrospective research conducted in the United States, there were 2 patients who had a Philadelphia chromosome [3]. In Hong Kong, there was a 73-year-old man with chronic obstructive lung disease who presented with BMN which later was diagnosed with ALL harboring BCR-ABL1 mutation [4]. A 23-year-old woman in France was diagnosed with ALL showing t(9;22) with this specific mutation [5] and also there has been a published case report in China [6]. Lastly, there was a similar report in Japan as in our case whose BMN persisted after chemotherapy and use of tyrosine kinase inhibitors [7].

Bone marrow necrosis was first described by Wade and Steven-

Table 1. Literature of Philadelphia chromosome positive acute lymphoblastic leukemia presented with bone marrow necrosis

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Year</th>
<th>N</th>
<th>Sex/Age</th>
<th>Karyotype</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1994</td>
<td>1</td>
<td>M/73</td>
<td>47,XY,+X,der(9)del(9)(p21)[2]/46,XY[q34,1q11,12][13]/46,XY[2]</td>
<td>[4]</td>
</tr>
<tr>
<td>2</td>
<td>2005</td>
<td>1</td>
<td>M/73</td>
<td>46,XY t(9;22)[q34,q11]</td>
<td>[7]</td>
</tr>
<tr>
<td>3</td>
<td>2006</td>
<td>1</td>
<td>F/42</td>
<td>46,XX[20]</td>
<td>[6]</td>
</tr>
<tr>
<td>4</td>
<td>2009</td>
<td>1</td>
<td>F/23</td>
<td>46,XXt(9;22)[q34,q11]</td>
<td>[5]</td>
</tr>
<tr>
<td>5</td>
<td>2015</td>
<td>2</td>
<td>Unspecified</td>
<td></td>
<td>[3]</td>
</tr>
<tr>
<td>6</td>
<td>2017</td>
<td>1</td>
<td>M/58</td>
<td>46,XY t(9;22)[q34,1q11,2][13]/46,XY[7]</td>
<td>Current case</td>
</tr>
</tbody>
</table>
Bone Marrow Necrosis in a Patient with Ph+ B-ALL

BMN, which is a rare finding in B-ALL patient with BMN. However, laboratory workups found that he had

The non-malignant causes include mainly severe infections, sickle cell diseases, drugs, antiphospholipid syndrome and bone marrow transplant [1].

BMN itself is believed to have a dismal prognosis to patient survival. BMN in acute myeloid leukemia is associated with poorer outcome with significantly inferior overall survival and event-free survival. Similarly, ALL patients with marrow necrosis had significantly inferior complete remission rate compared to those without BMN [3]. The patient from our case survived for only about a month even though the diagnosis was made no later than a week and chemotherapy was initiated 10 days after admission. According to Maisel et al. [11], BMN is classified into minor (grade I) involving <20% of bone marrow, intermediate (grade II) involving 20–50% of the bone marrow and severe (grade III) >50% of the bone marrow. Our patient had marrow necrosis of grade III both on the initial and follow-up studies.

Although the pathogenesis of bone marrow necrosis is not clear, the common hypothesis involves elevated tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) which lead to bone marrow endothelial cell injury with subsequent microvascular occlusion. Other than microvascular infarction, several other factors such as granulocyte activation, excessive oxygen consumption by rapidly proliferating tumor cells, and thrombosis have been also suggested for pathogenesis of BMN [12]. In the present case, BMN was still observed even after peripheral blast cells were decreased and chemotherapy with tyrosine kinase inhibitors were used. This might suggest that BMN was not caused by the proliferative effect of leukemic cells but rather by mechanical obstruction.

We report here a patient presenting with fever, bone pain, anemia, thrombocytopenia, and lymphocytosis, in which the symptoms are relatively similar to other cases of acute leukemia with BMN. However, laboratory workups found that he had BCR-ABL1 gene rearrangement, which is a rare finding in B-ALL patient with BMN.

REFERENCES

8. Wade IJ and Stevenson LD. Necrosis of bone marrow with fat embolism in sickle cell anemia. Am J Path 1941;17:47-54.