LMO

Table. 3.

An example of linearity verification

Level PH Measured value σ value Weight Predicted value (P) Deviation 90% CI ±ADL Overlaps with ±ADL
#1 #2 #3 Mean (M) SD Lower limit Upper limit
1 1 3,250 3,393 3,301 3,314.7 72.473 70.658 1/(70.658)2 3,234.93 79.74 -17.36 176.83 ±161.75 Acceptable
2 0.75 2,502 2,401 2,378 2,427.0 65.962 51.736 1/(51.736)2 2,435.03 -8.03 -79.12 63.06 ±121.75 Acceptable
3 0.5 1,619 1,650 1,639 1,636.0 15.716 34.874 1/(34.874)2 1,635.13 0.87 -47.05 48.79 ±81.76 Acceptable
4 0.25 788 790 799 792.3 5.859 16.890 1/(16.890)2 835.24 -42.90 -66.11 -19.69 ±41.76 Acceptable
5 0.1 331 340 342 337.7 5.859 7.198 1/(7.198)2 355.30 -17.63 -27.52 -7.74 ±17.76 Acceptable
6 0 35 36 35 35.3 0.577 1/(0.577)2 35.34 0.00 -0.80 0.79 ±1.77 Acceptable
A(WLS) 3,199.6 B(WLS) 35.336

Construct a function with no intercept: Y=S∙X (X-axis: M; Y-axis: SD)

When calculating the slope S using Microsoft Excel, use the command ‘LINEST((SD region), (M region),0)’ instead of the command ‘slope’ because it presupposes that there is a non-zero intercept.

Then, σ=S∙M

Construct a function of the least square linear regression: Y=A∙X+B (X-axis: PH, Y-axis: M)

When calculating the slope A using Microsoft Excel, use the command ‘LINEST((M region), (PH region)^2)’. And when calculating the intercept B using Microsoft Excel, use the command “SQRT(SUMSQ(Level 6 data)/3), where 3 is the number of replicates in this example.

Then, P=A∙PH+B

Deviation=M–P; 90% CI=Deviation±Z1α2αR;±ADL=M∙% ADL (in this example, the target %ADL was set to 5%)

Abbreviations: PH, the proportion of the high-level sample; SD, standard deviation; CI, confidence interval; ADL, allowable deviation from linearity; WLS, weighted linear square regression.

Lab Med Online 2024;14:163~175 https://doi.org/10.47429/lmo.2024.14.3.163
© Lab Med Online