LMO

Table. 4.

An example of establishing the dilution factor

Sample Dilution factor % Sample Neat
100
1/2
50
1/4
25
1/10
10
1/20
5
A Observed 391.1 200.9 91.1 36.2 22.1
Target 391.1 195.6 97.8 39.1 19.6
%Recovery 100.0 102.7 93.2 92.6 113.0
B Observed 306.0 151.9 79.4 33.1 16.2
Target 306.0 153.0 76.5 30.6 15.3
%Recovery 100.0 99.3 103.8 108.2 105.9
C Observed 357.4 185.2 85.8 39.9 20.1
Target 357.4 178.7 89.4 35.7 17.9
%Recovery 100.0 103.6 96.0 111.6 112.5
D Observed 361.2 171.1 83.4 39.1 16.5
Target 361.2 180.6 90.3 36.1 18.1
%Recovery 100.0 94.7 92.4 108.3 91.4
E Observed 388.6 190.1 95.9 35.8 21.2
Target 388.6 194.3 97.2 38.9 19.4
%Recovery 100.0 97.8 98.7 92.1 109.1
Mean %Recovery 100.0 99.6 96.8 102.5 106.4
SD of %Recovery 0.00 3.64 4.64 9.42 8.87
N 5 5 5 5 5
t-test 2.776 2.776 2.776 2.776 2.776
SE 0.00 1.63 2.07 4.21 3.97
Upper 97.5% CL 100.0 104.2 102.6 114.2 117.4
Lower 2.5% CL 100.0 95.1 91.1 90.9 95.4

Target value=(Value of neat sample)∙(Dilution factor); %Recovery=100∙(Observed value)/(Target value).

Mean and SD %Recovery are the values calculated using the %recoveries of 5 samples in each dilution factor.

From Appendix B of EP34-ED1 [19], the t-test value for N=5 is 2.776.

SE=SD/(√n); Upper 97.5% CL=mean %recovery+SE∙(t-test value); Lower 2.5% CL=mean %recovery–SE∙(t-test value).

If the goal of %recovery is 10%, the mean %recovery for all dilution factors satisfies the goal. However, in this example, the 97.5 upper CL or the 2.5 lower CL in 1/10 and 1/20 dilutions do not satisfy the goal. Therefore, 1/10 and 1/20 dilution factors cannot be used, and the maximum dilution factor established is 1/4.

Abbreviations: SD, standard deviation; SE, standard error; CL, confidence limit.

Lab Med Online 2024;14:163~175 https://doi.org/10.47429/lmo.2024.14.3.163
© Lab Med Online