Articles Service
Review Article
Thiopurine 약물치료에 있어서 NUDT15 유전형 검사
NUDT15 Genotyping in Thiopurine Drug Therapy
성균관대학교 의과대학 삼성서울병원 진단검사의학과1, 녹십자의료재단 진단검사의학부2
Department of Laboratory Medicine and Genetics1, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul; Department of Laboratory Medicine2, Green Cross Laboratories, Yongin, Korea
Correspondence to:This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Lab Med Online 2022; 12(4): 217-226
Published October 1, 2022 https://doi.org/10.47429/lmo.2022.12.4.217
Copyright © The Korean Society for Laboratory Medicine.
Keywords
Azathioprine (AZA), 6-mercaptopurine (6-MP), 6-thioguanine (6-TG)을 포함하는 티오퓨린(thiopurine) 약물은 퓨린(purine) 대사과정에서 항 대사물질(anti-metabolite) 작용을 하여 자가면역 질환, 크론병과 궤양대장염과 같은 염증성 장질환, 급성림프모구백혈병의 치료제 및 고형 장기 이식 후 이식된 장기의 거부 반응을 줄이기 위한 면역억제제로 이용된다[1]. 티오퓨린 약물은 체내에서 다양한 효소에 의해 세포 내 대사과정을 거쳐 체내에 자연적으로 존재하는 퓨린과 활성 대사체를 모방하여 DNA 또는 RNA에 결합하며, 이 과정에서 세포사멸을 촉진하여 약물의 효과를 나타내기도 하지만 간 독성이나 혈구감소증과 같은 치명적인 독성을 일으킬 수 있다[2]. 이러한 과정은 약물동력학 및 약물유전적 요인과 관련이 있으며, 티오퓨린의 대사과정 및 약물유전학에 대한 이해가 최적화된 티오퓨린 치료에 중요하다[1, 3, 4].
Thiopurine S-methlytransferase (TPMT) 효소 활성도가 저하된 환자에서 티오퓨린 투약 시 약물 대사체인 6-thioguanine nucleotide (TGN)의 농도가 상승되고 독성 위험도가 증가된다는 사실은 잘 알려져 있다. 따라서,
본 종설에서는 티오퓨린 약물 치료에 있어 특히 한국인에서 그 중요성을 가지는
1. Thiopurine 대사 및 작용 기전
티오퓨린 약물은 전구약물(prodrug)로, 경구로 투여된 약물은 장에서 흡수되어 치료적 효과를 가지는 활성형 대사체인 6-thio-deoxyguanosine triphosphate (6-TdGTP)와 6-thioguanosine triphosphate (6-TGTP) 등의 TGN이 되기 위해 세포 내 많은 대사 단계를 거치며, 활성형이 된 후 세포 내에서 메틸화(methylation)와 산화(oxidation)를 거쳐 비활성화 된다(Fig. 1) [1, 2]. AZA는 간에서 효소의 관여없이 6-MP로 전환되고, 일부 소량은 glutathione S-transferase에 의해 전환된다[1]. 6-MP의 대부분은 다양한 경로를 통해 경쟁적으로 대사되는데, 1) TMPT에 의해 비활성형 methyl-mercaptopurine (methylMP)이 되거나, 2) xanthine oxidase에 의해 비활성형 thiouric acid가 되어 배설되거나, 3) hypoxanthine–guanine phosphoribosyltransferase (HGPRT)에 의해 thioinosine monophosphate로 변환된 후 inosine monophosphate dehydrogenase (IMPDH)와 guanosine monophosphate synthetase (GMPS)에 의해 thioguanine monophosphate (TGMP)가 형성된다[1, 2]. 이후 kinases에 의해 TGMP가 활성형인 6-TGTP로, 추가적인 효소들에 의해 인산화되어 6-TdGTP로 변환되며, 최종적으로 활성형 6-TdGTP와 6-TGTP를
-
Figure 1. Thiopurine pathway [61]. Permission has been given by PharmGKB and Stanford to use this figure (https://www.pharmgkb.org/pathway/PA2040). Pathway images and data are available under a Creative Commons BY-SA 4.0 license.
2. NUDT15 의 임상적 의의
-
Table 1 . Clinical implication of
NUDT15 in different diseases and its association with thiopurine drug toxicityReferences Disease Drug Study population Subjects (N) Genotyping method Associated toxicity Walker et al. [18] IBD AZA European 1,170 GWAS and EWAS Myelosuppression Sutiman et al. [43] IBD AZA Multiethnic Asian 129 Pyrosequencing Leukopenia, neutropenia Banerjee et al. [49] IBD AZA Indian 1,014 TaqMan SNP genotyping Leukopenia, neutropenia Chao et al. [50] IBD AZA Chinese 732 PCR-RFLP and sequencing Leukopenia Wang et al. [51] IBD AZA Chinese 219 TaqMan SNP genotyping Leukopenia Kojima et al. [44] IBD AZA Japanese 96 TaqMan SNP genotyping or Sanger sequencing Leukopenia Akiyama et al. [52] IBD AZA Japanese 83 Sanger sequencing Leukopenia Sato et al. [53] IBD AZA Japanese 160 TaqMan SNP genotyping or Sanger sequencing Gastrointestinal intolerance, leukopenia, alopecia Kakuta et al. [54] IBD AZA Japanese 2,630 GWAS Gastrointestinal intolerance, leukopenia, alopecia Yang et al. [5] IBD AZA Korean 978 Immunochip and TaqMan SNP genotyping Leukopenia Choi et al. [55] IBD AZA or 6-MP Korean 131 Sanger sequencing Leukopenia Yang et al. [23] ALL 6-MP East Asian, European, African, and Hispanic 1,028 Genome-wide genotyping Thiopurine intolerance Ju et al. [48] ALL 6-MP Korean 71 Sanger sequencing Lower thiopurine dose Buaboonnam et al. [42] ALL 6-MP Thai 102 Allele-specific PCR Neutropenia Puangpetch et al. [56] ALL 6-MP Thai 100 Sanger sequencing Neutropenia Yi et al. [57] ALL 6-MP Korean 182 Sanger sequencing Hematotoxicity, lower thiopu- rine dose Choi et al. [22] ALL 6-MP Korean 139 Sanger sequencing Leukopenia Schaeffeler et al. [58] ALL AZA European 796 Sanger sequencing Hematotoxicity Moriyama et al. [30] ALL AZA Guatemalan, Singaporean, and Japanese 270 Sanger sequencing Thiopurine intolerance Fei et al. [34] Autoimmune diseases AZA Chinese 87 TaqMan SNP genotyping Leukopenia Fan et al. [33] Autoimmune hepatitis AZA Chinese 149 TaqMan SNP genotyping Leukopenia Kim et al. [32] Neuro-immunological diseases AZA Korean 84 Sanger sequencing Leukopenia, alopecia Abbreviations: 6-MP, 6-mercaptopurine; ALL, acute lymphoblastic leukemia; AZA, azathiopurine; EWAS, epigenome-wide association study; GWAS, genome-wide association study; IBD, inflammatory bowel disease; SNP, single nucleotide polymorphism.
1) 염증장질환에서 NUDT15
AZA와 6-MP는 크론병 및 궤양성대장염 등의 염증장질환에서 유지 치료를 위해 이용된다. 티오퓨린 독성에 의한 약물 부작용을 고려하여 미국소화기학회(American Gastoenterological Association, AGA) 진료지침에서는 활동성 염증장질환 환자 치료 및 용법 변경 시 적혈구 내 활성형 대사체인 6-TGN과 methylMP의 농도 측정을 통한 치료적약물모니터링(therapeutic drug monitoring, TDM)을 권고한 바 있다[14-17].
AZA 및 6-MP 등의 티오퓨린 치료를 받는 염증장질환자에서 골수억제, 위장 증상, 탈모 등과 같은 약물부작용과
이에 2018년 National Institutes of Health’s Pharmacogenomics Research Network (NIH PGRN) 산하 Clinical Pharmacogenetics Implementation Consortium (CPIC)의 지침에서는 티오퓨린 치료를 받는 환자에서
2) 백혈병에서 NUDT15
6-MP는 급성림프모구백혈병 환자에서 치료 효과를 높이기 위해 다양한 항암제(methotrexate, vincristine, prednisone 등)와 함께 유지 치료에 이용되는 주요 약제이며, 6-TG는 강화 치료나 비림프구성백혈병 등의 치료에 이용된다[9, 22-24]. 소아 급성림프모구백혈병 환자에서
3) 기타 질환에서 NUDT15
AZA는 다양한 면역질환 및 장기이식 환자에서 면역억제제로 이용된다. 면역질환에서
3. NUDT15 유전자
-
Table 2 . Minor allele frequency of
NUDT15 allelic variants [6, 59, 60]Star allele cDNA position (NM_018283.3) Amino acid change Allele function [60] Central/South Asian East Asian European Korean [6] African [6] RS number *1 Wild-type sequence Normal Function 0.930 0.879 0.993 0.867 0.998 *2 55_56insGAGTCG + c.415C >T V18_V19insGV + R139C No Function 0.000 0.035 0.000 0.044 0.000 rs746071566 + rs116855232 *3 c.415C >T R139C No Function 0.067 0.061 0.002 0.069 0.001 rs116855232 *4 c.416G >A R139H Uncertain Function 0.000 0.001 0.000 0.004 0.000 rs147390019 *5 c.52G >A V18I Uncertain Function 0.000 0.011 0.000 0.011 0.000 rs186364861 *6 55_56insGAGTCG V18_V19insGV Uncertain Function 0.002 0.013 0.003 0.005 0.001 rs746071566 *7 101G >C R34T Uncertain Function 0.000 0.001 0.000 rs766023281 *8 103A >G K35E Uncertain Function *9 50delGAGTCG G17_V18del No Function 0.000 0.000 0.002 rs746071566 *10 2T >C M1T Not assigned rs769369441 *11 139G >A G47R Not assigned *12 156C >G F52L Not assigned rs149436418 *13 342_343insG E115G fs Not assigned rs761191455 *14 80_81insCGGG C28G fs Not assigned rs777311140 *15 467T >A L156Q Not assigned rs139551410 *16 88C >T L30V Not assigned *17 352G >T E118X Not assigned rs1368252918 *18 221delA N74M fs Not assigned rs1457579126 *19 3G >C M1I Not assigned *20 386C >G P129R Not assigned rs768324690
4. NUDT15 유전형 검사
1) 적응증, 대상 및 시행 시기
2016년 발간된 진단검사의학 임상약물유전검사 지침에서는 티오퓨린 치료에 있어서 개인별 적정 초기용량 결정을 위해 티오퓨린 계열 약물의 치료 시작 전
2) 검사법 및 고려 사항
약물유전검사의 검사방법으로는 주요 대립유전자만 우선적으로 선택하여 유전자의 특정 변이 부위만을 검사하는 분석방법과 유전자의 전체 부위를 모두 분석하는 방법이 있다. 인종별로 흔한 대립유전자형이 서로 다르기 때문에, 검사법의 개발 또는 선택 시 해당 분석법에 포함된 분석대상에 대한 정확한 이해와 검토가 필요하다.
임상약물유전검사는 비용 효율성 및 결과 보고 시간을 고려해야 하며, 특히 전향적 약물유전검사인 경우는 주요 변이형 만을 대상으로 한 신속한 결과 보고가 유리할 수도 있다. 반면, 약물 독성 발현 후 유전적 요소에 대한 확인을 위한 후향적 약물유전검사의 경우에는 가능성 있는 유전적 및 비유전적 요소에 대한 심도 있는 분석이 더욱 중요할 수 있겠다[3, 4].
외부정도관리 프로그램으로는 College of American Pathologists (CAP) 주관 pharmacogenetics (PGX) survey가 있으며 rs116855232 (c.415C>T, *2 또는 *3), rs147390019 (c.416G>A, *4), rs18 6364861 (c.52G>A, *5) 등 세 변이만을 대상으로 연 2회 실시되고 있다. 국내에서는 2022년 대한임상검사정도관리협회의 약물유전 진단유전검사 프로그램에
3) 결과 해석 및 적용
약물유전검사 결과보고서는 유전자의 염기서열 변화, 예측되는 아미노산 서열의 변화, 그에 따른 대립형질 및 유전형, 예측되는 표현형을 포함하여야 한다. 검사법에 따라 특정 변이 부위만을 선별적으로 검사하는 경우에는 전체 변이를 검출할 수 없어 야생형으로 잘못 분류될 가능성이 있으므로 검사방법과 분석대상에 대한 정보도 반드시 포함되어야 한다[3, 4].
약물유전검사에서는 유전형과 표현형 간의 상관성, 즉, 약물대사 및 반응에 대한 예측 정보가 중요하다[3, 4].
약물유전검사 보고 시 단순히 유전형분석 결과만 보고하기보다, 약물유전형에 따른 약물 선택 및 용량 조절에 대한 표준화된 지침을 제시하는 것이 도움이 될 수 있다[4]. CPIC나 DPWG 등의 지침에서는
-
Table 3 . Thiopurine drug dosing recommendations according to
NUDT15 phenotypes (based on genotypes) in different guidelines and drug labelsNUDT15 phenotypeExamples of NUDT15 diplotypesClinical guidelines 6-MP AZA 6-TG Intermediate metabolizer *1/*2, *1/*3 CPIC Reduce starting dose (30–80% of a normal dose) Reduce starting dose (30–80% of a normal dose) Reduce starting dose (50–80% of normal dose) DPWG Reduce starting dose (50–70% of a normal dose) Reduce starting dose (50–70% of a normal dose) Reduce starting dose (75% of normal dose) EMA EPAR Reduce dose (optimal dose reduction not available) Not available Not available USFDA drug label Reduce starting dose (50–90% of a normal dose)
If heterozygous for bothTPMT and , dose based on a tolerability of 30–50%NUDT15 Reduce starting dose (optimal dose reduction not available) Reduce starting dose (50–90% of normal dose)
If heterozygous for bothTPMT and , dose based on a tolerability of 30–50%NUDT15 Possible intermediate metabolizer *2/*5, *3/*6 CPIC Reduce starting dose (30–80% of a normal dose) Reduce starting dose (30–80% of a normal dose) Reduce starting dose (50–80% of normal dose) DPWG Not available Not available Not available EMA EPAR Reduce dose (optimal dose reduction not available) Not available Not available USFDA drug label Reduce starting dose (50–90% of a normal dose)
If heterozygous for bothTPMT and , dose based on a tolerability of 30–50%NUDT15 Reduce starting dose (optimal dose reduction not available) Reduce starting dose (50–90% of normal dose)
If heterozygous for bothTPMT and , dose based on a tolerability of 30–50%NUDT15 Poor metabo- lizer *2/*2, *2/*3,*3/*3 CPIC For malignancy, reduce starting dose (10 mg/m2/day)
For a nonmalignant condition, consider alternative non-thiopurine agentsFor malignancy, reduce starting dose (10% of a normal dose)
For a nonmalignant condition, consider alternative non-thiopurine agentsFor malignancy, reduce starting dose (25% of normal dose)
For nonmalignant condition, consider alter- native non-thiopurine agentsDPWG Avoid 6-MP Avoid AZA Avoid 6-TG Reduce starting dose (10–20%* of a normal dose) Reduce starting dose (10–20%* of a normal dose) Reduce starting dose (10–20%* of normal dose) EMA EPAR Reduce dose (optimal dose reduction not available) Not available Not available USFDA drug label Reduce starting dose (5-10% of a normal dose) Consider alternative non-thiopurine agents Reduce starting dose (5-10% of normal dose) It has been known that normal starting doses vary by race/ethnicity and treatment regimens. If the standard dose is below the normal recommended dose, dose reduction might not be recommended for intermediate metabolizers [1].
*There were insufficient data available to calculate the exact percentage.
Abbreviations: 6-MP, 6-mercaptopurine; 6-TG, 6-thioguanine; AZA, azathiopurine; CPIC, Clinical Pharmacogenetics Implementation Consortium; DPWG, Dutch Pharmacogenetics Working Group; EMA EPAR, European Medicines Agency European Public Assessment Report; US FDA, US Food and Drug Administration.
티오퓨린 약물은 간에서 대사되는데, 질환에 따라 티오퓨린 이외에도 다른 약물을 병용하여 증상을 조절하는 경우가 많아 약물 대사에 영향을 줄 수 있는 복잡하고 다양한 인자들이 존재한다[2, 29]. 예를 들어, 소아 림프모구백혈병의 치료 시 methotrexate에 의해서도 골수억제 부작용이 있을 수 있으며, allopurinol은 메틸화된 활성형 대사물을 줄이는 역할을 하는 등 티오퓨린 외 약물이 티오퓨린의 약물동력학에 영향을 줄 수 있다[29]. 또한
티오퓨린 약제 투약 시 TDM 방법으로서, 적혈구 내 활성형 대사체 6-TGN과 methyl-MP를 측정할 수 있다[13, 21]. 단,
본 종설에서는 티오퓨린 치료를 받는 한국인 환자에서 임상적 중요성이 높은
- Relling MV, Schwab M, Whirl-Carrillo M, Suarez-Kurtz G, Pui CH, Stein CM, et al. Clinical Pharmacogenetics Implementation Consortium Guideline for Thiopurine Dosing Based on
TPMT andNUDT15 Genotypes: 2018 Update. Clin Pharmacol Ther 2019;105:1095-105. - Moyer AM.
NUDT15 : A bench to bedside success story. Clin Biochem 2021;92:1-8. - Kim S, Yun YM, Chae HJ, Cho HJ, Ji M, Kim IS, et al. Clinical pharmacogenetic testing and application: Laboratory medicine clinical practice guidelines. Ann Lab Med 2017;37:180-93.
- Kim S, Yun YM, Kim IS, Song SH, Woo HI, Lee KA, et al. Clinical pharmacogenetic testing and application: laboratory medicine clinical practice guidelines part 2. Lab Med Online 2016;6:193-213.
- Yang SK, Hong M, Baek J, Choi H, Zhao W, Jung Y, et al. A common missense variant in
NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat Genet 2014;46:1017-20. - Kim HT, Choi R, Won HH, Choe YH, Kang B, Lee K, et al.
NUDT15 genotype distributions in the Korean population. Pharmacogenet Genomics 2017;27:197-200. - Valerie NC, Hagenkort A, Page BD, Masuyer G, Rehling D, Carter M, et al. NUDT15 hydrolyzes 6-thio-deoxyGTP to mediate the anticancer efficacy of 6-thioguanine. Cancer Res 2016;76:5501-11.
- Evans WE. Improving the treatment of childhood acute lymphoblastic leukemia by optimizing the use of 70-year-old drugs. Haematologica 2021;106:2794-6.
- Larsen RH, Utke Rank C, Grell K, Nørgaard Møller L, Malthe Overgaard U, Kampmann P, et al. Increments in DNA-thioguanine level during thiopurine-enhanced maintenance therapy of acute lymphoblastic leukemia. Haematologica 2021;106:2824-33.
- Dean L and Kane M. Mercaptopurine Therapy and
TPMT andNUDT15 genotype. In: Pratt VM and Scott SA, et al., eds. Medical genetics summaries. https://www.ncbi.nlm.nih.gov/books/NBK100660/ (Updated on Oct 2020). - Dickson AL, Daniel LL, Zanussi J, Dale Plummer W, Wei WQ, Liu G, et al.
TPMT andNUDT15 variants predict discontinuation of azathioprine for myelotoxicity in patients with iflammatory disease: real-world clinical results. Clin Pharmacol Ther 2022;111:263-71. - Carreras-Puigvert J, Zitnik M, Jemth AS, Carter M, Unterlass JE, Hallström B, et al. A comprehensive structural, biochemical and biological profiling of the human NUDIX hydrolase family. Nat Commun 2017;8:1541.
- Singh A, Mahajan R, Kedia S, Dutta AK, Anand A, Bernstein CN, et al. Use of thiopurines in iflammatory bowel disease: an update. Intest Res 2022;20:11-30.
- American Gastroenterological Association. Therapeutic drug monitoring in iflammatory bowel disease: clinical decision support tool. Gastroenterology 2017;153:858-9.
- Feuerstein JD, Nguyen GC, Kupfer SS, Falck-Ytter Y, Singh S. American gastroenterological association institute guideline on therapeutic drug monitoring in iflammatory bowel disease. Gastroenterology 2017;153:827-34.
- Lee SD, Shivashankar R, Quirk D, Zhang H, Telliez JB, Andrews J, et al. Therapeutic drug monitoring for current and investigational iflammatory bowel disease treatments. J Clin Gastroenterol 2021;55:195-206.
- Lee KM, Kim YS, Seo GS, Kim TO, Yang SK. Use of Thiopurines in Iflammatory Bowel Disease: A Consensus Statement by the Korean Association for the Study of Intestinal Diseases (KASID). Intest Res 2015;13:193-207.
- Walker GJ, Harrison JW, Heap GA, Voskuil MD, Andersen V, Anderson CA, et al. Association of genetic variants in
NUDT15 with thiopurine-induced myelosuppression in patients with iflammatory bowel disease. JAMA 2019;321:773-85. - Nakase H, Uchino M, Shinzaki S, Matsuura M, Matsuoka K, Kobayashi T, et al. Evidence-based clinical practice guidelines for iflammatory bowel disease 2020. J Gastroenterol 2021;56:489-526.
- Lee YJ, Hwang EH, Park JH, Shin JH, Kang B, Kim SY.
NUDT15 variant is the most common variant associated with thiopurine-induced early leukopenia and alopecia in Korean pediatric patients with Crohn's disease. Eur J Gastroenterol Hepatol 2016;28:475-8. - Lamb CA, Kennedy NA, Raine T, Hendy PA, Smith PJ, Limdi JK, et al. British Society of Gastroenterology consensus guidelines on the management of iflammatory bowel disease in adults. Gut 2019;68:s1-106.
- Choi R, Sohn I, Kim MJ, Woo HI, Lee JW, Ma Y, et al. Pathway genes and metabolites in thiopurine therapy in Korean children with acute lymphoblastic leukaemia. Br J Clin Pharmacol 2019;85:1585-97.
- Yang JJ, Landier W, Yang W, Liu C, Hageman L, Cheng C, et al. Inherited
NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin Oncol 2015;33:1235-42. - Karol SE, Yang JJ. Pharmacogenomics and ALL treatment: How to optimize therapy. Semin Hematol 2020;57:130-6.
- Khaeso K, Nakkam N, Komwilaisak P, Wongmast P, Chainansamit SO, Dornsena A, et al. Genetic polymorphisms of drug-metabolizing enzymes involved in 6-mercaptopurine-induced myelosuppression in Thai pediatric acute lymphoblastic leukemia patients. J Pediatr Genet 2021;10:29-34.
- Fan POL, Leung KT, Chan KYY, Leung AWK, Lam GKS, Chow TTW, et al.
ABCC4 ,ITPA ,NUDT15 ,TPMT and their interaction as genetic predictors of 6-mercaptopurine intolerance in chinese patients with acute lymphoblastic leukemia. Pediatr Hematol Oncol 2022;39:254-66. - Ramalingam R, Kaur H, Scott JX, Sneha LM, Arun Kumar GP, inivasan A Sr, et al. Pharmacogenetic evaluation of 6-mercaptopurine-mediated toxicity in pediatric acute lymphoblastic leukemia patients from a South Indian population. Pharmacogenomics 2021;22:401-11.
- Tsujimoto S, Osumi T, Uchiyama M, Shirai R, Moriyama T, Nishii R, et al. Diplotype analysis of
NUDT15 variants and 6-mercaptopurine sensitivity in pediatric lymphoid neoplasms. Leukemia 2018;32:2710-4. - Koutsilieri S, Caudle KE, Alzghari SK, Monte AA, Relling MV, Patrinos GP. Optimizing thiopurine dosing based on
TPMT andNUDT15 genotypes: It takes two to tango. Am J Hematol 2019;94:737-40. - Moriyama T, Nishii R, Perez-Andreu V, Yang W, Klussmann FA, Zhao X, et al.
NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat Genet 2016;48:367-73. - Tanaka Y, Saito Y. Importance of
NUDT15 polymorphisms in thiopurine treatments. J Pers Med 2021;11:778. - Kim SY, Shin JH, Park JS, Kang SY, Nam TS, Kim JK, et al.
NUDT15 p.R139C variant is common and strongly associated with azathioprine-induced early leukopenia and severe alopecia in Korean patients with various neurological diseases. J Neurol Sci 2017;378:64-8. - Fan X, Yin D, Men R, Xu H, Yang L.
NUDT15 polymorphism confer increased susceptibility to thiopurine-induced leukopenia in patients with autoimmune hepatitis and related cirrhosis. Front Pharmacol 2019;10:346. - Fei X, Shu Q, Zhu H, Hua B, Wang S, Guo L, et al. NUDT15 R139C variants increase the risk of azathioprine-induced leukopenia in Chinese autoimmune patients. Front Pharmacol 2018;9:460.
- Shih YC, Zou YR, Wang B, Zheng J, Pan M. Azathioprine-induced myelosuppression in two pemphigus vulgaris patients with homozygous polymorphism of
NUDT15 . J Dermatol 2019;46:e59-61. - Saida K, Kamei K, Ogura M, Matsumura S, Kano Y, Sato M, et al. Azathioprine-induced agranulocytosis and severe alopecia after kidney transplantation associated with a
NUDT15 polymorphism: A case report. Transplant Proc 2018;50:3925-7. - Yang JJ, Whirl-Carrillo M, Scott SA, Turner AJ, Schwab M, Tanaka Y, et al. Pharmacogene variation consortium gene introduction:
NUDT15 . Clin Pharmacol Ther 2019;105:1091-4. - Wang Q, Mailloux J, Schwarz UI, Kim RB, Wilson A. A novel
NUDT15 variant identified in CaucasianTPMT wild type patients with iflammatory bowel disease and azathioprine-related myelotoxicity. Pharmacogenet Genomics 2022;32:39-41. - Kim HY, Lee SH, Lee MN, Kim JW, Kim YH, Kim MJ, et al. Complete sequence-based screening of
TPMT variants in the Korean population. Pharmacogenet Genomics 2015;25:143-6. - Ran Z, Wu K, Matsuoka K, Jeen YT, Wei SC, Ahuja V, et al. Asian Organization for Crohn's and Colitis and Asia Pacific Association of Gastroenterology practice recommendations for medical management and monitoring of iflammatory bowel disease in Asia. J Gastroenterol Hepatol 2021;36:637-45.
- Buaboonnam J, ipatanatadasakul P Sr, Treesucon A, Glomglao W, Siraprapapat P, Narkbunnam N, et al. Effect of
NUDT15 on incidence of neutropenia in children with acute lymphoblastic leukemia. Pediatr Int 2019;61:754-8. - Sutiman N, Chen S, Ling KL, Chuah SW, Leong WF, Nadiger V, et al. Predictive role of
NUDT15 variants on thiopurine-induced myelotoxicity in Asian iflammatory bowel disease patients. Pharmacogenomics 2018;19:31-43. - Kojima Y, Hirotsu Y, Omata W, Sugimori M, Takaoka S, Ashizawa H, et al. Ifluence of
NUDT15 variants on hematological pictures of patients with iflammatory bowel disease treated with thiopurines. World J Gastroenterol 2018;24:511-8. - Caudle KE, Dunnenberger HM, Freimuth RR, Peterson JF, Burlison JD, Whirl-Carrillo M, et al. Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genet Med 2017;19:215-23.
- Choi CH, Moon W, Kim YS, Kim ES, Lee BI, Jung Y, et al. Second Korean Guideline for the Management of Ulcerative Colitis. Korean J Gastroenterol 2017;69:1-28.
- Choi R, Chun MR, Park J, Lee JW, Ju HY, Cho HW, et al. Quantification of thioguanine in DNA using liquid chromatography-tandem mass spectrometry for routine thiopurine drug monitoring in patients with pediatric acute lymphoblastic leukemia. Ann Lab Med 2021;41:145-54.
- Ju HY, Lee JW, Cho HW, Hyun JK, Ma Y, Yi ES, et al. DNA-thioguanine nucleotide as a treatment marker in acute lymphoblastic leukemia patients with
NUDT15 variant genotypes. PLoS One 2021;16:e0245667. - Banerjee R, Ravikanth VV, Pal P, Bale G, Avanthi US, Goren I, et al.
NUDT15 C415T variant compared withTPMT genotyping in predicting azathioprine-induced leucopenia: prospective analysis of 1014 iflammatory bowel disease patients in India. Aliment Pharmacol Ther 2020;52:1683-94. - Chao K, Wang X, Cao Q, Qian J, Wu K, Zhu X, et al. Combined detection of
NUDT15 variants could highly predict thiopurine-induced leukopenia in Chinese patients with iflammatory bowel disease: A multicenter analysis. Iflamm Bowel Dis 2017;23:1592-9. - Wang HH, He Y, Wang HX, Liao CL, Peng Y, Tao LJ, et al. Comparison of
TPMT andNUDT15 polymorphisms in Chinese patients with iflammatory bowel disease. World J Gastroenterol 2018;24:941-8. - Akiyama S, Matsuoka K, Fukuda K, Hamada S, Shimizu M, Nanki K, et al. Long-term effect of
NUDT15 R139C on hematologic indices in iflammatory bowel disease patients treated with thiopurine. J Gastroenterol Hepatol 2019;34:1751-7. - Sato T, Takagawa T, Kakuta Y, Nishio A, Kawai M, Kamikozuru K, et al.
NUDT15 ,FTO , andRUNX1 genetic variants and thiopurine intolerance among Japanese patients with iflammatory bowel diseases. Intest Res 2017;15:328-37. - Kakuta Y, Kawai Y, Okamoto D, Takagawa T, Ikeya K, Sakuraba H, et al.
NUDT15 codon 139 is the best pharmacogenetic marker for predicting thiopurine-induced severe adverse events in Japanese patients with iflammatory bowel disease: a multicenter study. J Gastroenterol 2018;53:1065-78. - Choi R, Lee MN, Kim K, Baek SY, Kim TJ, Hong SN, et al. Effects of various genetic polymorphisms on thiopurine treatment-associated outcomes for Korean patients with Crohn's disease. Br J Clin Pharmacol 2020;86:2302-13.
- Puangpetch A, Tiyasirichokchai R, Pakakasama S, Wiwattanakul S, Anurathapan U, Hongeng S, et al.
NUDT15 genetic variants are related to thiopurine-induced neutropenia in Thai children with acute lymphoblastic leukemia. Pharmacogenomics 2020;21:403-10. - Yi ES, Choi YB, Choi R, Lee NH, Lee JW, Yoo KH, et al.
NUDT15 variants cause hematopoietic toxicity with low 6-TGN levels in children with acute lymphoblastic leukemia. Cancer Res Treat 2018;50:872-82. - Schaeffeler E, Jaeger SU, Klumpp V, Yang JJ, Igel S, Hinze L, et al. Impact of
NUDT15 genetics on severe thiopurine-related hematotoxicity in patients with European ancestry. Genet Med 2019;21:2145-50. - Whirl-Carrillo M, Huddart R, Gong L, Sangkuhl K, Thorn CF, Whaley R, et al. An evidence-based framework for evaluating pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 2021;110:563-72.
- Gaedigk A, Casey ST, Whirl-Carrillo M, Miller NA, Klein TE. Pharmacogene Variation Consortium (PharmVar). https://www.pharmvar.org/about (Updated on Mar 2018).
- Zaza G, Cheok M, Krynetskaia N, Thorn C, Stocco G, Hebert JM, et al. Thiopurine pathway. Pharmacogenet Genomics 2010;20:573-4.